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A COGNITIVE ARCHITECTURE FOR SOLVING ILL-DEFINED PROBLEMS 

Executive Summary 

During the  first year of the project  our work  focussed  on  the  following  areas: 

(1) We developed a new theory of analogical mapping based on a small set of 
principles   derived   from   data   on   human   analogical   thinking,   coupled   with 
computational   considerations.     The  theory  is  described   in  the  paper   "Analogical 
mapping   by   constraint   satisfaction:   A   computational   theory,"   which   has   been 
submitted for publication  and is included  as the body  of this annual  report.     The 
theory was implemented in a simulation written in COMMON LISP.    The theory derives 
the  optimal  mapping  between  two  complex  analogs  by  computing the  set  of mappings 
between  concepts  and  objects  that  best  satisfies  the  constraints,  using  a  parallel 
constraint-satisfaction  algorithm.     The  program  has  been  applied  to  over   10 
examples,   including  detailed  simulations  of several  sets  of psychological   data 
regarding  the  relative  difficulty  of various  analogies.     A  graphics  package  was 
written  to   display   the   complex   interactions   between   analogical   components   that   yield 
the   solutions   to   mapping  problems. 

(2) A  series  of experiments  was conducted  to  investigate  the conditions  under which 
people will spontaneously access analogies stored in memory.    The results to date 
indicate  that  analogical   access  during  problem   solving  is  more  likely  to  be  triggered 
if the   initial   information   was   itself encoded   in  a  problem-solving  context,   rather 
than  having  been  encoded   in   a  more  declarative  form. 

(3) A  review paper entitled  "Dimensions  of analogy"  was  completed,  reviewing 
alternative theories  of analogy that have been proposed.     This  work  was  important  in 
providing  background  for the  development  of a major revision  and  extension  of our 
computational   model   of  analogical  problem   solving. 

(4) Preliminary  work  was done to  integrate  the new model  of the mapping process 
into  our broader simulation  of analogical  problem  solving.     Continuation  of this  work 
will  be  a central  focus of our research  in the coming year. 
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Abstract 

We propose a computational theory of analogical mapping from a source analog to a target, 

based on five constraints. (1) Logical compatibility requires that elements of the source analog 

map only onto target elements of the same logical kind (constants to constants, n-place predicates 

to n-place predicates). (2) Uniqueness encourages each source element to map onto at most one 

element of the target. (3) Relational consistency leads any one hypothesis about mapped elements 

to support other hypothesized mappings suggested by the same relations. (4) Semantic similarity 

supports mapping hypotheses to the degree that mapped predicates have similar meanings. (5) 

Role identity restricts possible mappings to those between elements that play identical roles in 

high-level parts of the two analogs (e.g., goal elements can map only to goal elements). The theory 

is implemented in a computer program called ACME (Analogical Constraint Mapping Engine), 

which represents constraints by means of a network of supporting and competing hypotheses 

regarding what elements to map.   A cooperative algorithm for parallel constraint satisfaction 

identifies mapping hypotheses that collectively represent the overall mapping that best fits the 

interacting constraints.   ACME has been applied to a range of examples including problem 

analogies, explanatory analogies, story analogies, formal analogies, and metaphors.   ACME is 

sensitive to similarity information if it is available, and yet able to compute mappings between 

formally isomorphic analogs with few similar or identical elements. The theory is able to account 

for empirical findings regarding the impact of consistency and similarity on human processing of 

analogies. 
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Introduction 

At the core of analogical thinking lies the process of mapping: the construction of orderly 

correspondences between the elements of a source analog and those of a target. Identifying 

an appropriate mapping is crucial in allowing useful transfer of knowledge. In this paper we 

provide a computational theory of analogical mapping, and describe a program that embodies 

an algorithm for mapping analogs in accord with the theory. 

The theory/algorithm distinction we have adopted derives from the work of David Marr 

(1982), who outlined a general approach to the analysis of information-processing systems. Such 

systems, he claimed, can be analyzed at three different levels. The level of computational theory 

focuses on the goal of the computation and the logic of the strategy by which it is carried out. 

The level of representation and algorithm addresses the representations of inputs and outputs 

and the algorithm that transforms the former into the latter. The level of hardware realization 

is concerned with the physical realization of the algorithm. Marr argued that although each of 

these levels of analysis can be important for understanding information processing, and all are 

logically and causally related, the couplings between them are quite loose. Some phenomena are 

best explained at only one or two of them. Marr stressed that analysis at the computational 

level is often crucial: "...An algorithm is likely to be understood more readily by understanding 

the nature of the problem being solved than by examining the mechanism (and the hardware) in 

which it is embodied" (1982, p. 27). 

Although Marr's formulation has often been favorably discussed by cognitive scientists, it 

has less often been emulated, especially for aspects of information processing that lie within the 

domain of general higher-level reasoning, as opposed to perception and language. In part this 

may reflect the fact that Marr illustrated his approach by applying it to low-level perceptual 

problems such as stereopsis, for which there is good reason to think that common computational 
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principles apply across individuals and indeed across species. In contrast, higher-level cognitive 

processes are typically influenced by complex forms of learning, and often involve important 

variations in strategies. Although in principle a computational theory could allow for strategic 

variations in task performance, in practice such variations make it difficult to identify overarching 

computational principles. 

In this paper we will apply Marr's form of theoretical analysis to analogical mapping. 

Despite the enormous conceptual gulf that would seem to separate analogical mapping from 

stereopsis, there are in fact suggestive similarities between the two problems at both the com- 

putational and algorithmic levels. Our analysis of analogy is thus to a degree by analogy. We 

will begin by considering the information-processing goals of analogical reasoning. The central 

function of mapping within this overall process can be realized by specifying the computation in 

terms of a small number of fundamental constraints. We will show that these constraints can be 

embodied in a robust parallel algorithm for analogical mapping, but make no claims at the level 

of hardware implementation. 

The Pragmatic Context of Analogical Mapping 

The Purpose of Analogy 

Analogy, and inference in general, must be understood pragmatically, taking into account the 

goals and purposes of the cognitive system (Holland, Holyoak, Nisbett, & Thagard, 1986; Holyoak, 

1985). At first glance, there seems to be no single information-processing purpose of analogy. 

Analogies are sometimes used to allow transfer of problem-solving operators, as when a prob- 

lem of destroying a tumor is solved by analogy to a method of repairing lightbulbs; to provide 

explanations of various kinds, as when the behavior of heat is explained in terms of water flow; 

to construct scientific theories, as when sound is understood in terms of the behavior of water 
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waves; to identify relationships between formal systems, as when we note that both addition 

of numbers and union of sets exhibit the properties of commutativity and associativity; and to 

provide metaphors, as when we hear that "Life's... a tale told by an idiot, full of sound and fury, 

signifying nothing." What common thread might run through these diverse examples? 

One essential function of analogy is to allow the mental representation of a source analog to 

organize the analogizer's mental representation of a target analog. The source provides a frame- 

work for analysing the target, selectively emphasizing aspects of the target that are congruent 

with the source, and potentially allowing the formation of novel hypotheses about the target 

domain. At the heart of this process, common to all examples of analogy, is the computation of a 

mapping—a set of correspondences—between elements of the source and target representations. 

The mapping should be consistent: mapped elements should remain in correspondence across 

the various relationships with other elements in which they participate. Consistency of mapping 

is crucial to establishing a shared organization between the source and target, rather than a set 

of arbitrary associations. Such a shared organization allows an analogy to serve the pragmatic 

function of using knowledge of the source to help understand the target. 

Subprocesses of Analogy 

In order to formulate a theory of mapping, it is necessary to consider the relationship between 

mapping and other aspects of analogical thinking. The centrality of mapping is a point of 

general agreement among all theorists who have discussed the use of analogy, whether in problem 

solving (Carbonell, 1983,1986; Gick & Holyoak, 1980), in explanation (Gentner, 1983), in theory 

formation (Darden, 1983; Thagard, in press b), in the analysis of formal systems (Hesse, 1966; 

Polya, 1973), or in metaphor and other literary uses (Black, 1962; Gentner, 1982; Holyoak, 1982; 

Miller, 1979). There has been less agreement, however, on the relationship between mapping and 
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other subprocesses of analogy, and on the related issue of whether a common set of principles 

governs mapping in different pragmatic contexts. 

It is useful to decompose analogy into four major components: (1) the retrieval or selection 

of a plausibly useful source analog, (2) mapping, (3) analogical inference or transfer, and (4) 

subsequent learning. Here we will leave aside the important issue of learning in the aftermath of 

analogy use, and focus on mapping and the components that immediately surround it: selection 

and transfer. These three subprocesses must collectively pick out a plausibly useful source analog, 

identify elements of the source that should determine transfer to the target, and effect such 

transfer. 

Is there in fact a general-purpose mapping component that operates in fundamentally the 

same way for different varieties of analogy, and if so what role does it play in this overall task? We 

can address this question indirectly, by examining the functions performed by the subprocesses 

of selection and transfer, and then considering what remains. Clearly, the selection component 

is crucial to the success of analogy. Spontaneous retrieval of a relevant source analog depends 

on the presence of similar elements in the source and target, including (in the case of problem 

analogs) similar constraints and goals (Brown, Kane, k Echols, 1986; Holyoak k Koh, 1987). 

In the absence of clear similarities, useful analogies are often missed (Gick k Holyoak, 1980); if 

misleading surface similarities are present, false analogies may be accessed and lead to negative 

transfer (Novick, 1986). 

Once a possible source analog is retrieved spontaneously or provided by a teacher, further 

•election must be made of the aspects of the source relevant to the analogy. Analogies are 

virtually always used to serve some known purpose, and the purpose will guide selection. If, for 

example, one is simply asked to compare what is known about Nicaragua with what is known 

about Cuba, all elements of the two representations are relevant. But if one is asked to assess 
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likely political trends in Nicaragua based on analogy to Cuba, then only a subset of what is known 

about Cuba—roughly, facts that bear on the development of its political system—will be mapped. 

For example, it is relevant to consider the degree to which Nicaragua's Daniel Ortega resembles 

Cuba's Fidel Castro. In contrast, suppose one is asked to predict the suitability of Nicaragua 

for sugar-cane production, again based on analogy to Cuba. The subset of knowledge about the 

source that is likely to be mapped will be very different—the similarity of Nicaragua to Cuba in 

terms of temperature and rainfall will loom much larger when the question concerns agriculture 

rather than politics. In examples such as these, the selection process can use pragmatic knowledge 

about the purpose of the analogy to identify not only a relevant source analog, but also which 

aspects of the source need be mapped. Much of the work of identifying aspects of the source that 

will determine transfer to the target can be done prior to mapping, based on knowledge of the 

purpose of the analogy coupled with causal knowledge concerning the source. 

Similarly, knowledge can be brought to bear on the transfer process after mapping has 

established correspondences between elements of the source and target. The mapping implicitly 

defines a set of inferences that could be made about the target, based on corresondences with 

predicates and objects in the source domain. Thus if predicate P and object O in the source map 

onto P' and O' in the target, and the proposition P(O) holds in the source, then the proposition 

P'(O') is a candidate inference about the target. Whether a candidate inference will in fact be 

seriously considered as a plausible hypothesis about the target will depend on such pragmatic 

factors as whether the inference is relevant to the analogizer's goals in using the analogy and 

whether the inference is consistent with what is already known about the target domain. 

The central task of the mapping component, then, is to take as inputs a target analog and a 

plausibly relevant source, and to compute a set of correspondences between elements of the source 

and target that is likely to yield useful candidate inferences.  We will argue that in addition to 
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being embedded in the overall pragmatic context of analogy use, the mapping component itself 

is guided in part by pragmatic and semantic constraints. 

Previous Models of Analogical Mapping 

Numerous models of analogical mapping have been proposed by researchers in cognitive psychol- 

ogy and artificial intelligence, and we will not attempt a thorough review here (see Hall, 1986; 

Thagard, in press a).   Different models have tended to stress pragmatic, semantic, or syntac- 

tic factors that might be used in mapping; few models have considered how different types of 

constraints might interact.   Some models have focused on the roles of high-level plans, goals, 

and functional knowledge in determining the most appropriate mapping (Burstein, 1986; Car- 

bonell, 1983, 1986; Kedar-Kabelli, 1985). Other models, such as that of Winston (1980), have 

stressed the importance of predicate similarity and causal knowledge. Winston's model used a 

serial algorithm that involved exhaustively considering each possible mapping of elements be- 

tween source and target.  The algorithm proved computationally intractable when the number 

of elements became even modestly large.  As a result, it was necessary to limit the number of 

possible mappings by imposing arbitrary semantic restrictions, such as only mapping story char- 

acters of the same gender.   As a consequence, the mapping algorithm would necessarily miss 

some potentially interesting mappings. These computational problems encountered by Winston 

suggest the importance of exploring alternative parallel algorithms. 

The strongest proponent of the role of syntactic knowledge in guiding mapping and transfer 

is Gentner (1983, forthcoming; Falkenhainer, Forbus, L Gentner, 1986). Gentner's "structure- 

mapping" theory distinguishes between "attributes", which are 1-place predicates with objects 

as arguments; "first-order relations", which are multi-place predicates with objects as arguments; 

and "higher-order relations", which are multi-place predicates with propositions as arguments. 
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On her view, higher-order relations are more likely to be transferred from the source to the target 

than are first-order relations; attributes are not transferred at all in analogies. The structure- 

mapping theory stresses the role of a aystematiciiy principle in guiding mapping: mappings 

between identical higher-order relations constrain mappings between first-order relations, which 

in turn constrain object mappings. To implement these ideas, Falkenhainer et al. (1986) have 

developed a computer program called SME (Structure-Mapping Engine). 

Relational structure undoubtedly plays a major role in mapping.   Furthermore, empiri- 

cal evidence supports the theory's prediction that systematicity should correlate with ease of 

mapping (Gentner k Toupin, 1986).  Nevertheless, several pieces of evidence suggest that the 

mapping component is not solely guided by syntactic constraints based on logical form   The 

particular higher-order relations emphasized in tests of the structure-mapping theory, "cause" 

and "implies", clearly might be deemed important on pragmatic rather than purely syntactic 

grounds (Hesse, 1966; Winston, 1980). Empirical evidence also indicates that semantic similar- 

ity of predicates, including attributes, has a major impact on ease of mapping (Gentner fc Toupin, 

1986). Furthermore, attributes sometimes seem to be more important than relations in analogical 

transfer, both in solving problems (Holyoak, Junn, k Billman, 1984) and in interpreting simple 

metaphors (e.g., "Tom is a giraffe"). 

Despite these problems, Gentner's structure-mapping theory has been applied successfully 

to a wide range of analogies. We concur with the general notion that predicate-argument relations 

help to constrain mappings, although we will challenge Gentner's characterization of systematic- 

ity in terms of higher-order relations. Because of its stress on the generality of the mapping 

component, and the clarity of its formulation, the structure-mapping theory will be used as the 

major basis for comparative assessment of the theory proposed here. 
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A Theory of Analogical Mapping 

The Need for Constraints 

The goal of our theory is to account for analogical mappings between mental representations of 

complex, organized bodies of knowledge. The mapping component is of course only one piece of 

an overall processing system for analogical reasoning. In addition to a natural-language interface, 

we assume prior processes of analogical retrieval and selection that (a) propose a plausible source- 

target pair, and (b) may provide information about the degree of semantic similarity between 

pairs of source-target predicates. The similarity computation may be based on decomposition of 

meanings into identities and differences (Hesse, 1966; Tversky, 1977). For our present purposes, 

however, we simply assume that the mapping component can receive a numerical index of the 

degree of semantic similarity between two predicates. In general, our theory of mapping can be 

stated independently of any strong theory of similarity, memory retrieval, or of other subprocesses 

of analogical inference. 

The theory to be proposed is compatible with any account of mental representation rich 

enough to distinguish (a) between predicates such as dog and constants such as Fido, and (b) 

between predicates with different numbers of arguments. For example, cow is a one-place predi- 

cate taking one argument, as in cow (Bossy), whereas loves is a two-place predicate taking two 

arguments, as in loves (John, Mary). The algorithm described below takes as input sentences in 

first-order predicate calculus, but the theory is not wedded to that particular formalism. 

The fundamental problem of analogical mapping is how to find appropriate correspondences 

between two analogs. If the analogs each have m predicates and n constants, then there are 

mln1. possible mappings from which to select. Thus a typical analogy between analogs with 

ten predicates and five constants each generates over four hundred million possible mappings. 

Efficient selection of the best mapping requires that some constraints be placed on what it might 
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be. This problem is similar to that of stereoscopic vision (Marr k Poggio, 1976). Stereopsis 

requires that points in two visual images, one from each eye, be appropriately paired; however, 

there is no a priori basis for uniquely deciding which point should go with which. Similarly, given 

representations of two complex analogs, there is no a priori basis for establishing a determinate set 

of correspondences between elements in the two analogs. In order to account for stereopsis, Marr 

and Poggio proposed several qualitative constraints on the visual system These constraints lead 

to the emergence of a unique set of point-to-point pairings, with each pairing consisting of points 

in each image arising from the same spatial position in the environment. Our computational 

theory of analogical mapping will similarly consist of a set of constraints. 

Five Constraints on Mapping 

Our constraint-satisfaction theory of mapping is based on five constraints that help to identify 

useful mappings. 

(1) Logical compatibility requires that elements of the source analog map only onto target 

elements of the same logical kind (constants to constants, n-place predicates to n-place predi- 

cates). Consider, for example, the analogy between the problems of using a laser to fuse a broken 

filament in a lightbulb and of using an X-ray to destroy a tumor in a patient's stomach (Holyoak 

k Koh, 1987). The logical-compatibility constraint would preclude consideration of a mapping 

between the one-place predicate laser and the two-place relation destroy. 

(2) Uniqueness encourages each source element to map onto at most one element of the 

target, and no two source elements to be mapped to the same target element. This constraint 

favors mappings that yield isomorphisms. 

(3) Relational consistency leads a hypothesis about mapped elements to support other 

hypothesized mappings suggested by the same relations.   In the above example, consistency 
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implies that if fuse maps onto destroy, then filament should tend to map onto tumor. Relational 

consistency helps produce a mapping that can be used to generate inferences about the target. 

(4) Semantic similarity supports mapping hypotheses to the degree that mapped predicates 

have similar meanings. In addition to empirical evidence that predicate similarity influences map- 

ping (Gentner k Toupin, 1986; Ross, in press), the similarity constraint is clearly pragmatically 

useful. Similar elements are in general likely to serve similar functions, and highly similar mapped 

predicates will yield a rich set of candidate inferences (Hesse, 1966). In our example, similarity 

would favor the mapping hypothesis laser-X-ray over laser-tumor. 

(5) Role identity, when applicable, restricts mapping hypotheses to those involving elements 

that play identical roles in the two analogs. The roles are based on pragmatically important 

divisions of the analogs into high-level parts. In the program described below, role identity only 

operates for problem analogies. Problems can be divided into the basic parts of initial state, 

goal state, solution constraints, and operators (Carbonell, 1983; Newell k Simon, 1972). Role 

identity requires that initial states map to initial states, goals to goals, and so on. In the above 

example, mappings involving fuse and destroy would be considered because each is part of the 

goal state of a problem. 

These five constraints serve differing functions in the mapping process. Logical consistency 

and role identity serve to prune the space of mapping hypotheses to be considered; the other 

constraints serve to evaluate the resulting set of candidate hypotheses. Uniqueness and relational 

consistency are purely internal constraints on mapping, which determine the intrinsic "goodness" 

of an analogy. Semantic similarity plays a more heuristic role, making it easier to find mappings 

that conform to the norm of having similar elements having similar functions. 

The above constraints on analogical mapping bear interesting similarities to the constraints 

on stereopsis proposed by Marr and Poggio (1976).  Logical consistency and role identity have 
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no apparent analog in the visual domain, but semantic similarity serves a function much like 

that of physical similarity (points of equal brightness may match). Uniqueness constrains both 

analogy and stereopsis. Relational consistency roughly corresponds to the visual constraint that 

disparities between matched points tend to vary continuously, in that both constraints allow 

evidence favoring any individual match hypothesis to be propagated to related hypotheses. 

These substantive similarities between constraints presumably reflect underlying common- 

alities between the computational tasks of mapping and matching. However, the differences 

between the tasks are at least as significant as the similarities. Most notably, there is good rea- 

son to think that the constraints on stereopsis are biologically determined and largely invariant 

across individuals. In contrast, the constraints on analogical mapping may be influenced by learn- 

ing and be open to strategic variations involving the relative influence of different constraints. 

Individual differences in analogical reasoning may arise from several factors: 

(1) Only a subset of the mapping hypotheses consistent with the constraints may in fact 

be considered. The selection may be based on additional constraints or simply on limitations of 

processing capacity. For example, only mappings between similar predicates may ever be con- 

sidered. Such a strategy would preclude finding potentially useful mappings between dissimilar 

elements. 

(2) Given the heuristic nature of the semantic similarity constraint, an intelligent strategy 

would be to enforce the constraint early in the mapping process, and then progressively relax it 

as the process proceeds. This strategy would allow the analogizer to derive the heuristic benefit 

of the similarity constraint in guiding the mapping process, but reduce the attendant danger of 

being "trapped" if the optimal mapping as defined by uniqueness and relational consistency in 

fact requires violation of the similarity constraint. 

(3) The use of role identity is particularly dependent on learning.   Without clear role 
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divisions that can be imposed on the analogs, this constraint cannot be invoked. It follows, for 

example, that an analogizer who encodes problems in terms of an abstract part structure may 

be better able to solve problems by analogy than will one who lacks such a structure. 

Although the simulation of analogical mapping described below does not directly model such 

strategic variations in mapping, it should be clear that the general theory provides a framework 

for incorporating such variations. 

ACME: A Cooperative Algorithm for Mapping 

What kind of representations and algorithms might be appropriate for computing analogical 

mappings on the basis of constraints? With respect to representation, our theory makes only 

the minimal assumption of distinguishing among constants and predicates of different numbers 

of arguments. Our algorithm for setting up possible mappings between analogs takes as input 

sets of sentences in first-order predicate calculus. We have no particular devotion to predicate 

calculus as a representation language (Thagard, 1984), but use it here because of its simplicity 

and familiarity. Other more complex representation languages should be amenable to similar 

treatment. 

Our algorithm for evaluating mappings is suggested by Marr and Poggio's (1976) treatment 

of stereoscopic matching, which was based on a cooperative algorithm, "...so-called because of 

the way in which local operations appear to cooperate in forming global order in a well-regulated 

manner" (Marr, 1982, p. 122). A cooperative algorithm is a procedure for parallel satisfaction 

of a set of interacting constraints. In the Marr and Poggio algorithm, a network of nodes is 

established, in which each node represents a possible pair of matched points, and excitatory and 

inhibitory connections between nodes represent constraints. The network is then allowed to run 

in order to find a globally optimal set of match hypotheses. 
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More generally, Marr (1982) argued that cooperative methods capture two principles that 

appear to govern fluent information processing: (1) the principle of graceful degradation, accord- 

ing to which degrading the input data should allow computation of a partial answer, and (2) the 

principle of least commitment, which requires avoiding doing something that may later have to 

be undone. More recently, others have argued that cooperative methods may be applicable to 

human memory-retrieval and higher-level reasoning, in addition to perceptual tasks (Rumelhart, 

Smolensky, McClelland, k Hinton, 1986). Several properties of an information-processing task 

can provide cues that a cooperative algorithm may be appropriate. A cooperative algorithm for 

parallel constraint satisfaction is preferable to any serial decision procedure when: (a) a global 

decision is composed of a number of constituent decisions, (b) each constituent decision should 

be based on multiple constraints, (c) the outcome of the global decision could vary depending on 

the order in which constraints are applied and constituent decisions are made, and (d) there is 

no principled justification for preferring any particular ordering of constraints or of constituent 

decisions. (For a philosophical discussion of the importance of parallel computation, see Thagard 

1986.) 

Analogical mapping using constraints exhibits all of these features. Accordingly, we have 

formulated a cooperative algorithm for mapping analogies and implemented it in a COMMON 

LISP program called ACME (Analogical Constraint Mapping Engine). Each possible mapping 

hypothesis about a possible pairing of a predicate or constant from the source with a correspond- 

ing element of the target is assigned to a node or unit. Each unit has an activation level ranging 

from -1 to 1, which indicates the plausibility of the corresponding hypothesis. Activation of 1 

indicates maximal plausibility and activation of-1 indicates maximal implausibility. Inferential 

dependencies between mapping hypotheses are represented by weights on links between units. 

Supporting evidence is given a positive weight, and disconfirmatory evidence is given a negative 
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weight. 

Insert Figure 1 about here 

Figure 1 provides a schematic representation of the kind of mapping network established by 

the ACME program. The input to the program consists of predicate-calculus representations of 

the source and target analogs. The abstract example in Figure 1 includes three 1-place predicates, 

three 2-place predicates, and three constants in each analog.   The program constructs units 

corresponding to each mapping hypothesis consistent with the logical-compatibility constraint. 

(If the analogs are problems, the role-identity constraint is also used to further restrict the 

units that are established.)   Thus for each 2-place predicate in the source, for example, units 

are established for each possible pairing with a 2-place target predicate (i.e., D=V, D=W, and 

D=X). In addition, for each source element a unit is constructed to represent the possibility of 

a null map (e.g., D=0)—i.e., the program explicitly considers the possibility that some source 

elements may not map to any target elements. In addition to the units representing mapping 

hypotheses, there is a special "semantic unit" that represents the system's prior assessment of 

the degree of semantic similarity between each pair of meaningful concepts in the source and 

target. 

Once the units are established, links are formed between them to represent the constraints 

of uniqueness, relational consistency, and semantic similarity. Figure 1 illustrates a subset of 

the links that would be formed for the example. All links have symmetric weights. To enforce 

uniqueness, inhibitory links (dotted lines) connect all competing hypotheses (e.g., the unit D= V 

inhibits D=W and E=V). In a complete version of Figure 1, inhibitory links would connect all 

units in the same row or column within each subset (2-place predicate mappings, 1-place predicate 
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mappings, and constant mappings), with the exception of the column of units for null mappings 

(since any number of source elements might fail to map to the target). To enforce relational 

consistency, excitatory links connect those units based on the same relation. For example, the 

predicate-mapping hypothesis D=V supports mappings between the corresponding constants, 

a=s and b=i, which in turn support each other. Similarly, the unit A=S supports a=s and B=T 

supports b=t. The semantic-similarity constraint is enforced by placing excitatory links from the 

semantic unit to all units representing mappings between meaningful concepts (i.e., predicates 

rather than constants), as well as to units for null mappings of predicates, such as D=0. The 

weights on these links are made proportional to the degree of semantic similarity between the 

mapped concepts. The links from the semantic unit to units representing null mappings are 

uniformly set at a minimal positive value. 

The manner in which the network is run to arrive at a solution is a straightforward ap- 

plication of constraint-satisfaction methods that have been investigated extensively in other ap- 

plications (see Rumelhart et al., 1986). To initialize the network, the activation level of the 

semantic unit is fixed at 1 and the activations of all other units are set to 0. On each cycle of 

activity, all units (except the semantic unit) have their activation levels updated on the basis 

of the activation levels and weights associated with neighboring units and links. The updating 

procedure is adapted from that employed in McClelland and Rumelhart's (1981) model of word 

recognition. The activation level of unit ; on cycle t is given by 

ai(i+l) = a>(t)(i-e) + < 
netj (max - a,-(<))    if net, > 0 

netj(aj(t) - min)    otherwise, 

where 0 is a decay parameter, min = -1, max = 1, and netj = E,u;oa,(0. The degree to which 

the activation levels of units satisfy the constraints imposed by the weights on links is given by 

a measure termed G, denned 1 as 
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G(t) = ZiZjWijOiWajit). 

On each cycle the activation adjustments produce a move to a new global state of activation 

that increases the value of G (Hopfield, 1982). The value of G can be interpreted as a rough index 

of the overall fit of the emerging mapping to the constraints of uniqueness, relational consistency, 

and similarity. 

Applications of ACME 

Table 1 lists the principal analogies to which ACME has been applied, along with the 

number of units and links that were formed for each. Because translation of analogies in natural 

language into predicate calculus inputs is somewhat arbitrary, these applications do not constitute 

strict tests of the theory implemented in ACME. Nevertheless, they show that ACME is applicable 

to several different kinds of analogies and is consistent with experimental results concerning when 

analogical mapping is difficult for people. In all these simulations the value of 0, the decay rate, 

was set at .01, the inhibitory weights for the uniqueness constraint were set at .02, the excitatory 

weights for relational consistency2 were set at .05, and the weights from the semantic unit were 

allowed to range from a minimum value of .01 to a maximum of .1 for identical predicates. 

Insert Table 1 about here 

Problem Analogies 

ACME has been applied to a number of problem analogies involving the use of a "convergence" 

solution, in which several weak forces are applied simultaneously to a centrally-located object 
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in order to achieve the effect of a single large force (Gick & Holyoak, 1980, 1983; Holyoak fc 

Koh, 1987). In experimental work using these materials, the target analog has typically been a 

"radiation problem", in which a doctor must find a way to use a ray to destroy a stomach tumor 

without harming the surrounding tissue (Duncker, 1945). Holyoak and Koh (1987) compared 

the effectiveness of four alternative versions of a source analog based on a "lightbulb problem", 

in which a broken filament in a lightbulb must be repaired. The four versions were denned by 

two types of variations. Surface similarity to the ray used in the target was varied by manip- 

ulating whether the force used in the lightbulb problem was a laser (highly similar to a ray) 

or an ultrasound beam (less similar). Similarity of problem constraints was also varied. The 

similar constraint in the source was that it was necessary to avoid breaking the fragile glass bulb 

surrounding the filament (analogous to avoiding injury to the tissue surrounding the tumor). 

The dissimilar constraint was that a force of sufficiently high intensity was not available. Table 

2 presents predicate-calculus representations of the "laser/fragile-glass" version of the lightbulb 

problem and of the radiation problem. These, together with similar representations of the other 

lightbulb versions, were used as inputs to ACME. In each run the possible mapping hypotheses 

were limited by the role-identity constraint (i.e., goal elements must map to goal elements, and 

so on). 

Insert Table 2 about here 

Holyoak and Koh (1987) measured the percent of undergraduates who produced the con- 

vergence solution to the radiation problem after reading one of the four versions of the lightbulb 

problem, both before a hint to use the source was given and in total after a hint was provided. 

For comparison with ACME's mapping results, these data are provided at the bottom of Table 3. 
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Since ACME is modeling mapping only, not retrieval, the more relevant comparison is with the 

number of solutions after a hint was given. Table 3 presents the results of running ACME on four 

versions of the convergence problem. Two global measures of the difficulty of the mapping are 

reported: the value of G after ten cycles (the higher the value, the greater the degree of fit to the 

constraints), and "cycles to success", the number of cycles required for all of the correct individ- 

ual mapping hypotheses to reach an activation level exceeding that of their nearest competitor. 

ACME is able to find the correct set of mappings in all four cases. G is substantially lower and 

cycles to success is substantially higher in the two bad-constraint conditions, which are just the 

ones that people have most trouble with. ACME shows a very slight effect of surface similarity, 

on G only, which arises from the differential weights from the semantic unit to the more similar 

predicate pair lastr-ny (set at .05) as compared to the less similar pair ultrasound-ray (.01). As 

the data from the Holyoak and Koh study indicate, people are also able to derive the mapping 

equally well in the laser and ultrasound conditions once a hint is provided. 

are 

Insert Table 3 and 4 about here 

The activation levels after 10 cycles of the winning hypotheses in the first condition 

shown in Table 4. Note that there is a considerable range of activation values, reflecting variations 

in the degree of support for different mapping hypotheses. 

ACME has also been applied to another convergence analogy, in which the target is the 

radiation problem and the source is the "fortress problem" used by Gick and Holyoak (1980). In 

the latter problem a general divides his army into small groups and has them converge simul- 

taneously on a fortress to capture it. Relative to all the versions of the lightbulb problem, the 

concepts in the fortress problem are less similar to those in the radiation problem Accordingly, 
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mapping the fortress and radiation problems requires more cycles to success (14) than mapping 

the basic laser and radiation problems, and produces a lower G value, .10, after 10 cycles. Human 

problem solvers also find it harder to use the fortress problem as opposed to any of the lightbulb 

problems as a source analog for the radiation problem. We advise, however, that comparing G 

values across problems is problematic because of its sensitivity to representation changes. 

ACME's performance on the various convergence analogies illustrates one of its major 

strengths relative to the SME program of Falkenhainer et al. (1986). SME would be unable to 

capture more than isolated fragments of these analogies because it is restricted to finding map- 

pings between identical relations. Although the convergence analogs include mappings between 

some identical relations (e.g., surround-surround), other mappings are between relations that 

have minimal similarity (e.g., fuse-destroy). ACME can identify such mappings by exploiting 

the constraints of relational consistency and uniqueness. We will provide further demonstrations 

below of ACME's performance with semantically-dissimilar relations. 

Explanatory Analogies 

ACME has been applied to the explanatory analogies discussed by Gentner (1983, forthcoming; 

Falkenhainer et al., 1986): the analogy between the flow of water caused by differential pressure 

and the flow of heat caused by differential temperature; and the analogy between the motion 

of planets around the sun and of electrons around an atomic nucleus. These examples allow a 

close comparison of the ACME and SME programs, since Falkenhainer et al. (1986) describe the 

representations used as input to SME in sufficient detail that we could provide essentially the 

same information about each analog to ACME. 

Table 5 presents predicate-calculus representations of the water-flow/heat-flow analogy that 

were used as inputs to ACME. These representations differ in certain respects from those used 
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by Falkenhainer et al. in testing SME. The representations used by Falkenhainer et al. treat the 

predicate "cause" as a second-order predicate with propositions as arguments. But causality is 

usually analyzed not as a relation between predicates or propositions, but as a relation between 

events or objects (Davidson, 1980; Steiner, 1986). Accordingly, our representations introduce 

constants representing events as a final argument of relations. For example, we interpret the 

temperature of coffee being greater than that of the ice cube as part of an event which can 

cause other events. Our representations also differ from those of Falkenhainer et al. in treating 

functions such as temperature in the way of standard logic, as 2-place relations between an 

object and a value (Mendelson, 1964, p. 7), rather than in the computer-language way as 

operators that return a value. Despite these representational differences, our first-order predicate- 

calculus representations encode essentially the same information as that which Falkenhainer et 

al. provided to the SME program. 

Insert Tables 5 and 6 about here 

Table 6 presents the activation levels of selected mapping hypotheses after 10 cycles. The 

complete correct mapping emerges after 7 cycles. There are two major impediments to a suc- 

cessful map from water flow to heat flow. First, there is the misleading information that both 

water and coffee are liquids and have a flat top. Although ACME initally maps water to coffee, 

relational information encoded in the network quickly enables it to provide higher activation to 

the unit representing the hypothesis that maps water to heat. As the values in Table 6 indicate, 

the mapping from water to heat emerges as a clear victor over the alternative possibility of map- 

ping water to coffee. Also note that the source predicate clear is correctly mapped onto the null 

element. 
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The second major impediment to a successful map is the irrelevant information concerning 

the diameters of the beaker and vial which would encourage the map of diameter to pressure as an 

equal competitor to the correct map of temperature to pressure. SME selects the correct map on 

the basis of Gentner's principle of systematicity, which selects predicates related by higher-order 

predicates. In contrast, we view the preferability of the temperature-pressure map as largely a 

pragmatic matter of the intended use of the the analogy. If water flow is being used to explain 

heat flow, than aspects of water systems that affect its flow (pressure differences rather than 

diameter differences) should be selected for transfer. 

In the representation of the heat-flow analogy in Table 5, the information-seeking purpose 

of the analogy is captured by the proposition (cause (fevent? cventH) in the heat-flow rep- 

resentation, where the dummy constant "?event?" represents the unknown cause of heat flow 

(eventl7). This dummy constant signals that a purpose of the mapping is to identify an actual 

constant in the heat situation that can fill the empty argument slot. ACME treats such con- 

stants specially, constructing weak excitatory links to units that have the potential of providing 

the desired information. Since event6 concerning the greater temperature has this desired feature 

by virtue of its appearance in the proposition (cause (cventß event!), whereas events concerning 

the greater diameter does not, units for mapping the former are slightly preferred to units for 

mapping the latter. Through subsequent network adjustments this results in higher activation of 

the unit that maps temperature and pressure than of the one that maps diameter and pressure. 

Note that the predicate diameter in fact maps to temperature more successfully than it maps to 

anything else; however, pressure maps to temperature slightly more successfully still. 

The role-identity constraint was not used in mapping this or any of the other remaining 

analogies we will consider in this paper, since these analogs lack the structure of problems. 

Weights from the semantic unit to predicate-mapping hypotheses were set equal to .1 for identical 
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predicates and to .01 otherwise. 

ACME is also able to produce the appropriate mapping for the solar-system/atom analogy 

that Falkenhainer et al. used to test SME. Since this analogy does not provide any additional 

complexities (a complete mapping is found in just 2 cycles), we will not describe the results in 

detail. ACME's ability to find essentially the same mappings in these two examples as were 

obtained with SME, without invoking the systematicity principle, raises the issue of how system- 

aticity relates to the constraints that govern ACME. We will defer discussion of this issue until 

we have presented additional relevant tests of ACME. 

Story Analogies 

Additional evidence concerning ACME's ability to account for empirical evidence relating to the 

effect of systematicity on mapping is provided by a study performed by Gentner and Toupin 

(1986). This experiment investigated the effects both of systematicity and transparency: the 

degree to which similar .objects serve similar functions in the analogy. Gentner and Toupin 

presented two groups of children, aged 4-6 years and 8-10 years, with a series of simple stories. 

After the child had acted out one version of a story with props, the experimenter asked him or 

her to act out the same story with different characters. 

Table 7 presents a simplified version of one of these stories that served as the basis for a 

simulation by ACME, and Table 8 presents the actual predicate-calculus representation provided 

to the program. As indicated in Table 7, each source story was used across children in either a 

"systematic" or a "nonsystematic" form The systematic version differed from the nonsystematic 

version in that it added additional information relevant to the causes of events in the story (e.g., 

the cat's jealousy caused its anger). Transparency was varied by manipulating the similarity 

of the animals in the various roles.  In the example used in the simulation, the target analog 
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involved a dog, seal, and penguin. In the S/S condition, the source analog involved similar 

characters playing similar roles (cat, walrus, and seagull). In the D condition, all the characters 

were quite different from those in the target (camel, lion, and giraffe). In the cross-mapped S/D 

condition, similar characters were used, but these played different roles than did the corresponding 

characters in the target (seagull, cat, and walrus). 

Insert Tables 7 and 8 about here 

Gentner and Toupin found that both systematicity and transparency affected the accuracy 

with which children enacted the target stories. The two effects interacted, in that performance 

was uniformly good, regardless of systematicity, when similar characters played similar roles (S/S 

condition). As the transparency of the mapping decreased from the S/S to the D and the S/D 

conditions, performance declined, and the advantage of the systematic over the unsystematic 

version increased. The positive impact of systematicity was more pronounced for the older group 

of children. 

In order to simulate these results, predicate-calculus representations of the stories were 

used as inputs to ACME (see Table 8). If the similarity of the characters in the source and 

target was high, the similarity weight for the corresponding predicate-mapping unit was set at 

.03; if the similarity was low, the weight was set at .01. Units for pairings of identical predicates 

were given similarity weights of .1. Table 9 presents global measures of the ease of mapping 

in each of the six conditions. Values of cycles to success correspond fairly well to the degree 

of difficulty that Gentner and Toupin's subjects had with analogies in the different condtions: 

the mapping is increasingly difficult to derive as either systematicity or transparency decreases, 

although ACME shows no interaction effect. Unlike the case for the simulations of convergence 



Holyoak k Tbag&rd 26 

analogies, however, G here does not correspond well to ease of solution. The greater activation 

present in the S/D condition as the result of semantic similarity leads to a relatively high G, even 

though the mismatch between characters and roles makes the problem hard both for subjects 

and for ACME with respect to cycles to success. Because the excitatory weights exceed the 

inhibitory weights, ACME manages to satisfy both the similarity constraints and the relational- 

consistency constraints to some degree in the S/D condition, despite the fact that these conflict. 

G is therefore kept relatively high, even though the correct mapping emerges slowly. 

Insert Table 9 about here 

It is clear why ACME's cycles to success are sensitive to both transparency and system- 

aticity. With respect to transparency, in the S/S condition the similarity constraint and the 

relational-consistency constraint are in agreement, and cooperate to produce the appropriate 

mappings of characters. In contrast, in the S/D condition the two factors are in direct competi- 

tion, making the mapping much more difficult to discover. The D condition, in which similarity 

carries no weight, and hence neither helps nor hinders relational consistency, is intermediate in 

difficulty. 

The systematicity factor in the Gentner and Toupin study is directly correlated with rela- 

tional consistency. Given that the subjects' task always involved mapping an isomorphic source 

and target, adding additional causal structure to the source necessarily increased the number 

of mappable predicates linking the source and target, which in turn increased overall relational 

consistency. These results, like the simulation of the explanatory analogies of Falkenhainer et al. 

(1986), indicate that the relational-consistency constraint can perform much, if not all, of the 

theoretical work that structure-mapping theory ascribes to systematicity. 
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As we noted above, Gentner and Toupin found that the younger children benefited less from 

high systematicity than did the older children. The authors suggested that focus on systematicity 

increases with age. In terms of the present theory, it is possible that with age children learn to 

place greater weight on relational consistency, and less on the similarity constraint. It is also 

possible, however, that the younger children in the Gentner and Toupin (1986) study simply failed 

to grasp some of the causal structure provided in the systematic stories, and hence encoded the 

source stories imperfectly. Thus the lesser benefit they derived from the systematic versions need 

not imply insensitivity to the relational-consistency constraint. 

A Formal Isomorphism 

As we pointed out in connection with the simulation of problem analogies, ACME is able to use 

relational-consistency information to map predicates that are not semantically identical, or even 

similar. In fact, if two analogs are isomorphic, it should be possible to derive an appropriate 

mapping even in the complete absence of information about semantic similarities. Table 10 

presents a formal analogy between addition of numbers and union of sets that was used to 

demonstrate this point. Both addition and union have the abstract mathematical properties of 

commutativity, associativity, and the existence of an identity element (0 for numbers, the empty 

set * for sets). ACME was given predicate-calculus representations of these two analogs, with 

no identical elements (note that number-equality and set-equality are given distinct symbols), 

and with all semantic weights set equal to the minimal value. Thus only weights based on 

relational consistency and uniqueness, coupled with the logical-compatibility constraint, provided 

information about the optimal mapping. 
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Insert Table 10 about here 

ACME quickly derives the appropriate correspondences between sum and union and be- 

tween equality of numbers and equality of sets; it also succeeds in mapping the two identity 

elements. However, the program fails to find one of the correspondences of particular numbers 

with particular sets. The exception arises because the first-order predicate-calculus representa- 

tion of the two analogs requires the introduction of numerous intermediate values, such as the 

sum of Nl and N2 and the union of SI and S2, which get in the way of finding the complete 

isomorphism. (The representations given to the program did not explicitly group the components 

of each analog into three distinct equations.) 

Although ACME's success is not complete on this problem, we note that the SME program, 

which is intended to be a purely syntactic theory of mapping, is incapable of even beginning to 

derive such formal analogies. Because SME depends on having identical top-level predicates in 

the source and target, it cannot recognize analogies based purely on relational structure. By 

contrast, although ACME is highly sensitive to semantic and pragmatic cues to the appropriate 

mapping when these are available, in the absence of such cues it is capable of mapping isomorphic 

analogs using purely internal constraints. 

Metaphor 

To explore the performance of ACME in metaphorical mapping, we gave the program predicate- 

calculus representations of the knowledge underlying a metaphor that has been analyzed in detail 

by Kittay (1987). The metaphor is derived from a passage in Plato's Theattttus in which Socrates 

declares himself to be a «midwife of ideas", elaborating the metaphor at length. Table 11 contains 
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predicate-calculus representations based on Kittay's analysis of the source analog concerning the 

role of a midwife and of the target analog concerning the role of a philosopher-teacher. Roughly, 

Socrates claims that he is like a midwife in that he introduces the student to intellectual partners, 

just as a midwife often serves first as a match-maker; and he helps the student evaluate the truth 

or falsity of his ideas much as a midwife helps a mother to deliver a child. 

Insert Table 11 about here 

Even without any information about semantic similarity, ACME is able to map these two 

analogs correctly after 13 cycles. The sentences expressing causal relations in the two analogs 

are not essential here: deletion of them still allows a complete mapping to be discovered. Thus 

the Socratic metaphor, like the addition/union analogy, illustrates the power of the relational- 

consistency and uniqueness constraints. 

General Discussion 

Our constraint-satisfaction theory of analogical mapping, as implemented in the ACME 

program, applies to diverse analogies. We will now consider more closely the relationship between 

the theory and a major previous account of mapping, and also point out some limitations and 

possible extensions of the current theory. 

Relationship of ACME to SME 

As we pointed out earlier, no previous account of analogical mapping has integrated constraints 

based on semantics, pragmatics, and the syntax of predicate-argument structure. This integration 

has enabled ACME to deal with an unusually broad range of analogies. The most comparable 
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alternative is the SME program based on Gentner's structure-mapping theory (Falkenhainer et 

al., 1986; Gentner, 1983, forthcoming). ACME and SME have several important similarities. 

Most notably, both models are intended as general theories of the mapping component, both 

derive a global "best" mapping from a set of constituent mappings, and both emphasize the role 

of predicate mappings in enforcing mappings between corresponding arguments. 

The differences, however, are also notable. ACME uses representations expressed in first- 

order predicate calculus; thus in contrast to SME, the formal "order" of predicates is not a factor 

used to constrain any aspect of the analogy process. ACME is primarily a model of mapping, 

rather than of transfer; however, the model in no way precludes transfer of attributes in addition 

to relations, as does SME. More generally, ACME includes semantic and pragmatic constraints 

on the mapping component, as well as constraints based on predicate-argument relations. 

Gentner's (forthcoming) systematicity principle postulates that people prefer to map con- 

nected systems of relations governed by higher-order relations with inferential import, rather 

than isolated predicates.. Our theory also emphasizes systems of relations, but identifies them by 

using the five constraints, particularly relational consistency, rather than higher-order relations. 

Although Gentner's systematicity and relational consistency are related, the two concepts are 

distinct. Systematicity is defined by the interrelatedness of predicate-argument structure within 

a single analog, whereas relational consistency is defined by the interrelatedness of predicate- 

argument structure between two analogs. Systematicity can be viewed as a prerequisite for 

relational consistency, in that if the two analogs lack internal structure, then ipso facto there 

is no basis for defining consistency of the mapping between the two. On the other hand, high 

systematicity in no way ensures relational consistency; for example, a person can have highly 

systematic representations of both the motion of planets and of Cuban politics, yet there is no 

obvious analogy between the two domains. 
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The SME program in fact attends to both relational consistency and to systematicity. The 

program first identifies subsets of consistently-mappable relations in the two analogs. "Con- 

sistency" in SME is similar to our uniqueness and relational-consistency constraints, but it is 

treated as a strict criterion, rather than as a matter of degree, and is restricted to mappings 

between identical relations. Once consistently-mappable subsets have been identified, SME eval- 

uates the systematicity of each subset to select a preferred mapping. In contrast, ACME attends 

to relational consistency and uniqueness, but not in a direct way to systematicity. In fact, as 

demonstrated by our simulation of the empirical effect of systematicity obtained by Gentner 

and Toupin (1986), sensitivity to relational consistency is sufficient to ensure sensitivity to sys- 

tematicity. For to the extent that the mapping between two analogs satisfies the constraint of 

maximizing relational consistency, the two analogs must in fact have a corresponding degree 

of internal systematic structure. In short, the mapping component can operate successfully by 

attending directly to relational consistency but not systematicity, whereas the converse is not 

true. 

A major advantage that use of the relational-consistency and uniqueness constraints conveys 

on ACME is its ability to find mappings between elements that are not semantically identical, 

or even similar. This power is demonstrated in the partial mapping found between the formal 

analogs of addition of number and union of sets, in which none of the mapped elements are similar. 

It also played an important role in mapping problem analogs and metaphors in which many of 

the mapped predicates were semantically dissimilar. In one experiment, ACME was run on the 

midwife/Socrates metaphor (see Table 11) with no use of "cause" and with the predicate "helps" 

changed to "aids". All weights from the semantic unit were set at a uniform minimal value, so 

that the program had no knowledge of identical or semantically similar predicates. Nonetheless, 

ACME arrived at the correct mapping in fewer than 30 cycles of updating activation.   Thus 
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sensitivity to predicate-argument structure allows the mapping component to find important 

similarities between predicates, rather than depending on the similarities being precoded in the 

initial representations of the analogs. This creative aspect of analogy is not well-captured by 

SME or other previous models of mapping that are highly dependent on preexisting similarities 

or identities. 

A related difference between the SME and ACME programs involves the "tightness* of con- 

straints on mapping. As noted above, SME begins by identifying consistently-mappable subsets 

of the analogs. Any violation of the strong constraint that mapped relations must be identical 

marks the limit of a consistently-mappable subset. The program typically yields several such 

subsets, ranked in order of "goodness". In contrast, ACME treats the constraints of relational 

consistency, uniqueness, and semantic similarity as "pressures" that operate in parallel to find a 

single mapping that best satisfies all of the converging and/or competing constraints (cf. Hof- 

stadter, 1984). The program on any one run finds a single set of "best" mapping hypotheses 

(although relatively high activation levels on other units convey information about possible al- 

ternative mappings). 

Extensions of the Theory 

Although our constraint-satisfaction theory of analogical mapping appears powerful in its in- 

tended domain, many other important issues about analogy remain unresolved. Most notably, 

the model of mapping needs to be incorporated into a broader theory of all phases of analogical 

reasoning (Holyoak k Thagard, forthcoming). Of particular interest is the link between the ini- 

tial spontaneous retrieval of plausibly useful analogs and the subsequent mapping process. There 

is evidence that retrieval is more heavily influenced by semantic similarity of predicates than is 

mapping (Gentner k Landers, 1985; Holyoak k Koh, 1987), although retrieval also seems to be 
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influenced by deeper forms of relational similarity (Holyoak, 1984; Holyoak k Koh, 1987; Schänk, 

1982). A model of the retrieval of analogs should presumably provide the initial computations 

of predicate similarities that are used to establish the weights from the semantic unit used by 

ACME. 

In addition to the need to address other components of analogy, other issues related to 

mapping remain outstanding. In exploratory simulations using homomorphs of the well-known 

"missionaries and cannibals" problem, ACME has trouble dealing with one-many mappings. 

This shortcoming of the program very likely reflects a broad area in which theories of analogy 

require extension. To find useful analogies between complex analogs, it will often be necessary 

to interweave the mapping component with strategic manipulation of the representations of the 

source and target. Non-isomorphic correspondences may be found if it is possible to tentatively 

group elements of each analog into sets, which can then be treated as unitary objects. More 

generally, it may often be advantageous to attempt mappings at different levels of abstraction. 

Thus although it has been useful to model analogical mapping as a separate component, future 

theoretical development will likely require that mapping be treated in a more integrated way 

with other aspects of analogy and general reasoning. 

Finally, we note that the general form of the theory we have proposed for analogical 

mapping—a set of constraints satisfiable via a cooperative algorithm—may well be applicable to 

other high-level cognitive processes. Lehnert (1987), for example, describes a sentence analyzer 

that uses a constraint network to parse sentences into case-frame meaning relationships. The 

parallelism of human information processing, which is so evident in lower-level perception and 

memory retrieval, may extend to important aspects of reasoning and problem solving as well. 
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Footnotes 

The research reported in this paper was supported by Contract MDA903-86-K-0297 from the 

Army Research Institute. The work was presented at the meeting of the Society for Philosophy 

and Psychology held at the University of California, San Diego, on June 21, 1987. We thank 

Laura Novick for helpful comments on an earlier draft. 

1. The formula for G used in ACME is a simpler form ofthat used elsewhere (Rumelhart et 

al., 1986), in that the present algorithm operates only on internal weights, and does not involve 

any external inputs. 

2. The relational-consistency weight is incremented for each cooccurrence of two mappings 

hypotheses. Thus if two relations each support both A=R and B=S, the excitatory link between 

these two units would receive double the basic weight. Such multiple cooccurrences occurred in 

the simulation of the addition/union analogy. 
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Figure Caption 

Figure 1. A schematic example of an ACME mapping network. Capital letters represent 

predicates, small letters represent constants. Solid lines represent excitatory connections, dotted 

lines represent inhibitory connections. See text for further explanation. 



Appendix 



Table 1 

Summary of Applications of ACME 

Analogs Number of Number of 
Units   Symmetric Links 

lightbulb/radiation problems (4 versions) 
(Holyoak & Koh, 1987) 

fortress/radiation problems 
(Gick & Holyoak, 1980) 

water-flow/heat-flow 
(Falkenhainer et al., 198 6) 

solar-system/atom 
(Falkenhainer et al., 1986) 

jealous-animal stories (6 versions) 
(Gentner & Toupin, 1986) 

midwife/Socrates 
(Kittay, 1987) 

addition/union 

100-118 853-912 

52 530 

187 2148 

213 2716 

138-217 1240-2589 

114 814 

186 2490 



Table 2 

Predicate-Calculus Representations of Lightbulb Problem 
(Laser/Fragile-Glass Version) and Radiation Problem 

LIGHTBULB PROBLEM (source) 

Start: (laser (obj-laser)) 
(bulb (obj-bulb) ) 
(filament (obj-filament) ) 
(surround (obj-bulb obj-filament)) 
(outside (obj-laser obj-bulb)) 
(can-produce (obj-laser obj-beams-high)) 
(high-intensity (obj-beams-high)) 
(can-doctoray (obj-beams-high obj-filament) ) 
(can-dSrei-oy (obj-beams-high obj-bulb) ) 
(can-produce (obj-laser obj-beams-low)) 
(low-intensity (obj-beams-low)) 
(cannot-flejtvoy   (obj-beams-low obj-filament)) 
(cannot-dentf?oy (obj-beams-low obj-bulb)) 

Goals: (fuse (obj-laser obj-filament)) 
(intact (obj-bulb)) 

RADIATION PROBLEM (target) 

Start: (ray-source (obj-ray)) 
(tissue (obj-tissue)) 
(tumor (obj-tumor)) 
(surround (obj-tissue obj-tumor)) 
(outside (obj-ray obj-tissue)) 
(can-produce (obj-ray obj-rays-high)) 
(high-intensity (obj-rays-high)) 
(can-destroy (obj-rays-high obj-tumor)) 
(can-destroy (obj-rays-high obj-tissue)) 
(can-produce (obj-ray obj-rays-low)) 
(low-intensity (obj-rays-low)) 
(cannot-destroy (obj-rays-low obj-tumor)) 
(cannot-destroy (obj-rays-low obj-tissue)) 

Goals: (destroy ( obj-ray obj-tumor)) 
(alive (obj-tissue)) 



Table 3 

Mappings Obtained for Four Versions of 
Lightbulb/Radiation Problem Analogy 

Version 

Laser/      Ultrasound/      Laser/ 
Fragile-glass  Fragile-glass  Insufficient- 

intensity 

Ultrasound/ 
Insufficient- 
intensity 

Cycles to Success       4 

G after 10 cycles       5.43 

Percent Convergence 
Solutions 69 
Prior to Hint* 

Percent Convergence     75 
Solutions with Hint* 

4 

5.36 

38 

81 

8 

0.31 

33 

60 

9 

0.19 

13 

47 

"Data  from Holyoak  and Koh   (1987) 



Table 4 

Activation Values of Best Mappings of Lightbulb Problem to Radiation 
Problem (Laser/Fragile-Glass Version) after 10 cycles 

Unit: 

laser-ray-source 
filament-tumor 
bulb=tissue 
surround-surround 
outside=outside 
can-produce-can-produce 
high-intensity-high-intensity 
can-destroy-can-destroy 
low-intensity=low-intensity 
cannot-destroy-cannot-destroy 
fuse=destroy 
intact»alive 
obj_laser-obj_ray 
obj_filament=obj_tumor 
obj_bulb=obj_tissue 
obj_beams_high=obj_rays_high 
obj_beams_low«=obj_rays_low 

Activation 

0 .45 
0 .18 
0 .18 
0 .71 
0 .70 
0 .83 
0 .67 
0 .86 
0 67 
0 83 
0 30 
0 28 
0 75 
0 78 
0 79 
0 82 
0. 78 



Table 5 

Predicate-Calculus Representations of Water-Flow 
and Heat-Flow Analogs 

WATER-FLOW (source) 

(liquid (obj_water)) 
(flat-top (obj_water)) 
(clear (obj_beaker)) 

; the diameter of obj_beaker is obj_vall, as part of eventl 
(diameter (obj_beaker obj_vall eventl))* 
(diameter (obj_vial obj_val2 event2)) 
(greater (obj_vall obj_val2 event3)) 
(pressure (obj_beaker obj_val3 event4)) 
(pressure (obj_vial obj_val4 event5)) 
(greater (obj_val3 obj_val4 event6)) 

; flow:  from x to y of w via z 
(flow (obj_beaker obj_vial obj_water obj_pipe event7)) 

; pressure difference causes flow: 
(cause (event6 event7)) 

HEAT-FLOW (target) 

(liquid (obj_coffee)) 
(flat-top (obj_coffee)) 

(temperature (obj_coffee obj_vall3 eventl4)) 
(temperature (obj_ice_cube obj_vall4 eventl5)) 
(greater (obj_vall3 obj_vall4 eventl6)) 

(flow (obj_coffee obj_ice_cube obj_heat obj_bar event17)) 

(cause (?event? eventl7)) 

Note: Explanatory comments follow ";". 



Table 6 

Activation Values of Best Mappings of Water-Flow 
to Heat-Flow after 10 cycles 

Unit Activation 

liquid-liquid 0.63 
flat-top-flat-top 0.64 
clear-null 0.13 
diameter-temperature 0.37 
pressure-temperature 0.40 
greater-greater 0.73 
flow-flow 0.75 
cause-cause 0.66 
obj-pipe-obj-bar 0.47 
obj-water-obj-heat 0.45 
*obj_water-obj_coffee 0.30 
obj-vial-obj-ice-cube 0.58 
obj-beaker-obj-coffee 0.55 

♦Erroneous mapping hypothesis, provided for comparison purposes. 



Table 7 

Precis of a "Jealous Animal" Story as Used in ACME 
Simulation, in Systematic and Nonsystematic Versions 

The cat was jealous. 
(Nonsystematic version: The cat was strong.) 

The cat was friends with a walrus. 

The walrus played with a seagull. 

The cat was angry. 
(Systematic version: Because the cat was jealous 
and the walrus played with the seagull, the cat was angry.) 

The cat was reckless. 
(Systematic version: Because the cat was angry, it was reckless.) 

The cat got in danger. 
(Systematic version:  Because the cat was reckless, it got in danger.) 

The seagull saved the cat. 
(Systematic version: Because the seagull saved the cat, the cat was friends 
with the seagull.) 



Table 8 

Predicate-calculus Representation of a "Jealous Animal" Story: 
Similar Objects/Similar Roles (Systematic Version) 

(cat (obj_cat)) 
((jealous (obj_cat eventl6)) 
(walrus (obj_walrus)) 
(seagull (obj_seagull)) 
(friends (obj_cat obj_walrus)) 
(played (obj_walrus obj_seagull event11)) 
(angry (obj_cat event12)) 
(reckless (obj_cat eventl3)) 
(endangered (obj_cat eventl4)) 
(save (obj_seagull obj_cat event15)) 
(befriend (obj_cat obj_seagull eventl8)) 
(cause (eventll eventl2)) 
(cause (eventl2 event13)) 
(cause (eventl4 eventl5)) 
(cause (eventl3 eventl4)) 
(conjoin-event (eventl6 eventl2 eventl7))* 
(cause (eventl7 eventl3)) 
(cause (eventl5 eventl8)) 

*The  interpretation of  "conjoin-event"  is  that  two events  ar* 
coined to  form a third event.     This device  serves  to ensure 

conjunctive6 eveent^S  * ^^^ ^^ ^ the cause^T 



Table 9 

Results of ACME Runs for Six Versions of 
"Jealous Animal" Stories 

Versions 

Systematic: 

S/S 

D 

S/D 

Nonsystematic: 

S/S 

D 

S/D 

Cycles to 
Success 

1 

4 

16 

1 

7 

18 

G after 10 cycles 

9.9 

9.8 

9.8 

2.2 

2.1 

2.0 



Table 10 

Formal Isomorphism Between Addition of Numbers 
and Union of Sets 

Property 

commutativity: 

associativity: 

Addition 

N1+N2 = N2+N1 

N3+(N4+N5) = 
(N3+N4)+N5 

Union 

SI U S2 s  S2 U SI 

S3 U [S4 U S5] s 
[S3  U S4] U S5 

identity: N6+0 = N6 S6 U 0 ES6 



Table 11 

Predicate-Calculus Representations of Knowledge Underlying 
the Metaphor "Socrates is a Midwife of Ideas" 

MIDWIFE (source) 

(midwife (obj_midwife)) 
(mother (obj_mother)) 
(father (obj_father)) 
(child (obj_child)) 
(matches (obj_midwife obj_mother obj_father eventll)) 
(conceives (obj_mother obj_child event12)) 
(cause (eventll eventl2)) 
(in_labor_with (obj_mother obj_child)) 
(helps (obj_midwife obj_mother eventl3)) 
(give_birth_to (obj_mother obj_child eventl4)) 
(cause (eventl3 eventl4)) 

SOCRATES (target) 

(philosopher (socrates)) 
(student (obj_student)) 
(intellectual_partner (obj_partner)) 
(idea (obj_idea)) 
(introduces (socrates obj_student obj_partner eventl)) 
(formulates (obj_student obj_idea event2)) 
(cause (eventl event2)) 
(thinks_about (obj_student obj_idea)) 
(tests_truth (obj_student obj_idea)) 
(helps (socrates obj_student event3)) 
(knows_truth_or_falsity (obj_student obj_idea event4)) 
(cause (event3 event4)) 
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